Outward-facing conformers of LacY stabilized by nanobodies.

نویسندگان

  • Irina Smirnova
  • Vladimir Kasho
  • Xiaoxu Jiang
  • Els Pardon
  • Jan Steyaert
  • H Ronald Kaback
چکیده

The lactose permease of Escherichia coli (LacY), a highly dynamic polytopic membrane protein, catalyzes stoichiometric galactoside/H(+) symport by an alternating access mechanism and exhibits multiple conformations, the distribution of which is altered by sugar binding. We have developed single-domain camelid nanobodies (Nbs) against a LacY mutant in an outward (periplasmic)-open conformation to stabilize this state of the WT protein. Twelve purified Nbs inhibit lactose transport in right-side-out membrane vesicles, indicating that the Nbs recognize epitopes on the periplasmic side of LacY. Stopped-flow kinetics of sugar binding by WT LacY in detergent micelles or reconstituted into proteoliposomes reveals dramatic increases in galactoside-binding rates induced by interaction with the Nbs. Thus, WT LacY in complex with the great majority of the Nbs exhibits varied increases in access of sugar to the binding site with an increase in association rate constants (kon) of up to ∼ 50-fold (reaching 10(7) M(-1) ⋅ s(-1)). In contrast, with the double-Trp mutant, which is already open on the periplasmic side, the Nbs have little effect. The findings are clearly consistent with stabilization of WT conformers with an open periplasmic cavity. Remarkably, some Nbs drastically decrease the rate of dissociation of bound sugar leading to increased affinity (greater than 200-fold for lactose).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamics of Nanobody Binding to Lactose Permease.

Camelid nanobodies (Nbs) raised against the outward-facing conformer of a double-Trp mutant of the lactose permease of Escherichia coli (LacY) stabilize the permease in outward-facing conformations. Isothermal titration calorimetry is applied herein to dissect the binding thermodynamics of two Nbs, one that markedly improves access to the sugar-binding site and another that dramatically increas...

متن کامل

Correction for Smirnova et al., Transient conformers of LacY are trapped by nanobodies.

The lactose permease of Escherichia coli (LacY), a highly dynamic membrane protein, catalyzes symport of a galactopyranoside and an H(+) by using an alternating access mechanism, and the transport cycle involves multiple conformational states. Single-domain camelid nanobodies (Nbs) developed against a LacY mutant immobilized in an outward (periplasmic)-open conformation bind to the flexible WT ...

متن کامل

Probing of the rates of alternating access in LacY with Trp fluorescence.

Sugar/H(+) symport by lactose permease (LacY) utilizes an alternating access mechanism in which sugar and H(+) binding sites in the middle of the molecule are alternatively exposed to either side of the membrane by sequential opening and closing of inward- and outward-facing hydrophilic cavities. Here, we introduce Trp residues on either side of LacY where they are predicted to be in close prox...

متن کامل

Proton-coupled dynamics in lactose permease.

Lactose permease of Escherichia coli (LacY) catalyzes symport of a galactopyranoside and an H⁺ via an alternating access mechanism. The transition from an inward- to an outward-facing conformation of LacY involves sugar-release followed by deprotonation. Because the transition depends intimately upon the dynamics of LacY in a bilayer environment, molecular dynamics (MD) simulations may be the o...

متن کامل

Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane.

Many independent lines of evidence indicate that the lactose permease of Escherichia coli (LacY) is highly dynamic and that sugar binding causes closing of a large inward-facing cavity with opening of a wide outward-facing hydrophilic cavity. Therefore, lactose/H(+) symport catalyzed by LacY very likely involves a global conformational change that allows alternating access of single sugar- and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 52  شماره 

صفحات  -

تاریخ انتشار 2014